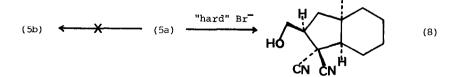
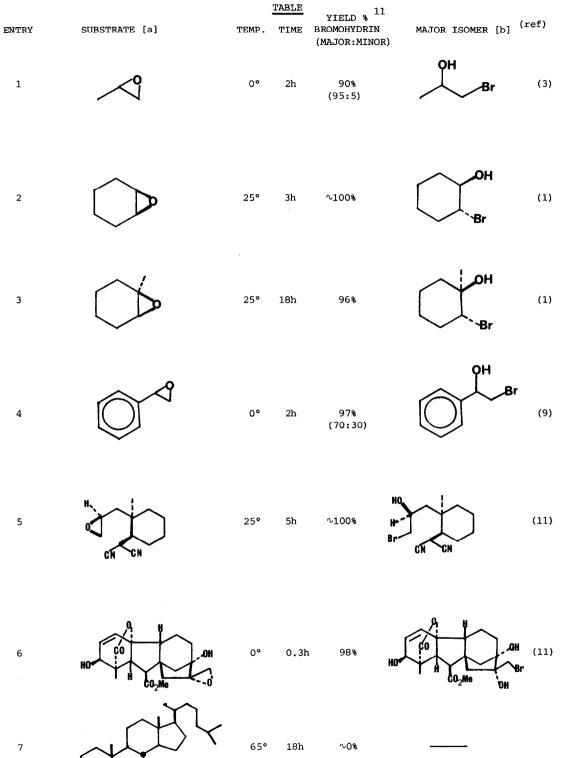
DILITHIUM TETRABROMONICKELATE (II) AS A SOURCE OF SOFT NUCLEOPHILIC BROMIDE :


REACTION WITH EPOXIDES


Robert D. Dawe, Tadeusz F. Molinski, and John V. Turner^{*} Research School of Chemistry, Australian National University, P.O. Box 4, Canberra, A.C.T., 2600, Australia

Summary: Dilithium tetrabromonickelate (II) in THF serves as a source of "soft" nucleophilic bromide and reacts regioselectively with epoxides to give bromohydrins in high yield.

As part of a program directed towards the synthesis of complex natural products, we recently required a non-aqueous source of "soft" nucleophilic bromide ion that would open epoxide rings with high regioselectivity without attacking other acid- and base-sensitive functional groups. A recently reported procedure¹ using bromine:triphenylphosphine unfort-unately suffers from moderate regioselectivity in opening unsymmetrically substituted epoxides because of the borderline S_N^2 mechanism, and from the propensity of this reagent to react with a range of nucleophilic functional groups;² the need to separate triphenylphosphine phine oxide from the halohydrin product is a further complication. For example we found using this procedure that the gibberellin epoxide (6a) only gave a 30% yield of bromohydrin (6b).

Methods based on hydrobromic acid³ were clearly not appropriate and neither was the use of dry tetra-alkylammonium bromides,⁴ or alkali metal bromides solublized with aprotic dipolar solvents (e.g. DMF or HMPA), since skeletal rearrangements can occur,^{5,6} and also because the resultant "naked" bromide ion is relatively "hard" and can function as a base, as well as a nucleophile. It is notable that under these conditions the dinitrile epoxide (5a) underwent cyclization to (8) and gave none of bromohydrin (5b).

HO

We considered that a solution to the problem could lie in the generation and utilization of dilithium tetrabromonickelate (II) $(\text{Li}_2\text{NiBr}_4)$ because this should be a source of "soft" bromide and also provide a "hard" but mild electrophile (i.e. Li^+) to facilitate epoxide ring-opening. In practice, anhydrous lithium bromide (2 eq) and nickel(II) bromide (1 eq), which is sparingly soluble in dry THF, readily dissolved together to give a dark blue-green solution (see *Procedure*) of the presumed tetrahedral complex, Li_2NiBr_4 .

As the examples listed in the Table indicate, epoxides undergo highly regioselective attack by Li_2NiBr_4 to yield, after work-up, bromohydrins with bromine predominantly at the less-hindered terminus. Reagent sensitivity to the steric environment about the epoxide can be gauged from the observation that epoxymethylcyclohexane (3a) gives the <u>trans</u>-bromohydrin (3b) in high yield whereas epoxycholestane (7a)⁸ failed to react even under forcing condition presumably because of increased hindrance along the β -vector to a transition state for <u>trans</u>diaxial epoxide opening. Even styrene oxide (4a), which is electronically prone to nucleophilic attack at the benzylic position⁹ reacts to give mainly the primary bromide (4b); here the regioselectivity is similar to that observed during attack by sodium methoxide.¹⁰

The mildness of the procedure is evident from the formation of bromohydrins from both the bis-nitrile epoxide $(5a)^{11}$ (c/f 8) and the gibberellin epoxide $(6a)^{11}$ which is prone to degradation in both acid and base. Moreover, we have noted that 1 mole of (6a) consumes 0.5 mole Li₂NiBr₄ but that excess reagent is not deleterious to the sensitive gibberellin product (6b).

Although the precise nature of the bromo-alkoxy intermediate before work-up (phosphate buffer, pH7) has yet to be determined, potential clearly exists for making alkoxy derivatives <u>in situ</u> by the addition of appropriate electrophiles; moreover, Li_2NiBr_4 itself should find wider use in substitution reactions requiring a stereochemically sensitive source of "soft" nucleophilic bromide ion. Studies in these areas are underway.

Procedure

(a) Preparation of Li₂NiBr₄ reagent

Anhydrous LiBr (6.96 g, 0.08 mol) and NiBr₂ (8.72 g, 0.04 mol) were stirred in dry THF (95 ml) at ~25°. After ~48 h, the stirring was stopped and any undissolved material allowed to settle, to reveal a clear dark blue-green solution of Li_2NiBr_4 (~0.4 M). (b) Opening of epoxides

To a solution of epoxide (1 mmol) in THF (~3 ml) was added an excess of Li_2NiBr_4 reagent (4 ml, 1.6 mmol). After being stirred for the specified time, the reaction mixture was then treated with phosphate buffer (~5 ml, 10%, pH7) and extracted with methylene chloride. This was then dried (Na₂SO₄) and concentrated to reveal the bromohydrins.

<u>Acknowledgements</u>: We are grateful to the NSERC (Canada) for supporting RDD, for a Commonwealth Postgraduate Research Award to TFM, and to Professor L.N. Mander for encouragement.

References and Notes

- 1. G. Palumbo, C. Ferreri, and R. Caputo, Tetrahedron Lett., 24, 1307 (1983).
- L.F. Fieser and M. Fieser, "Reagents for Organic Synthesis", <u>Wiley</u>, <u>1</u>, 1247; <u>2</u>, 446; <u>3</u>, 320; 4, 555, 729; 7, 407.
- 3. C.A. Stewart and C.A. VanderWerf, J. Am. Chem. Soc., 76, 1259 (1954).
- L. Lombardo, L.N. Mander, and J.V. Turner, <u>J. Am. Chem. Soc</u>., <u>102</u>, 6626 (1980) and <u>Aust.</u> J. Chem., <u>34</u>, 745 (1981).
- 5. B. Rickborn and R.M. Gerkin, J. Am. Chem. Soc., <u>93</u>, 1693 (1971).
- 6. G. Magnusson and S. Thorén, J. Org. Chem., <u>33</u>, 1380 (1973).
- 7. The complex has been prepared previously in molten dimethylsulphone at 128° for spectroscopic studies: G.P. Smith, C.H. Liu, and T.R. Griffiths, <u>J. Am. Chem. Soc.</u>, <u>86</u>, 4796 (1964). In control experiments using LiBr and NiBr₂ separately with (3a), we found reactions were slow and gave mixtures of products.
- 8. L.F. Fieser and M. Fieser, "Reagents for Organic Synthesis", Wiley, 1, 136.
- 9. R.E. Parker and N.S. Isaacs, Chem. Rev. (ACS), 59, 737 (1959).
- 10. W. Reeve and I. Christoffel, J. Am. Chem. soc., 72, 1480 (1950).
- 11. Yields are based on isolated products and isomer ratios were determined by integration of 200 MHz ¹H-nmr signals or G.C. analysis. New compounds had satisfactory elemental analyses (HRMS or combustion) and consistent spectroscopic characteristics; selected data are:

(5b) IR (film) 3570 cm⁻¹ (OH), ¹H-NMR (CDCl₃) δ 1.19 (s, 3H), 2.41 (br s, 1H, OH), 3.38 and 3.47 (AB of ABX J_{AB} =9.8, J_{AX} =7.9, J_{BX} =3.6, 2H, H_2 CBr), 3.94 (m, 1H, <u>H</u>COH), 4.27 (d, J=2.5, 1H, HC(CN)₂) ¹³C-NMR (CDCl₃) δ 41.1 (H_2 CBr), 68.0 (HCOH); MS m/z (M⁺, 1%), 205 (M⁺-H₂CBr, 100%).

(6b) Mp 136° (dec); $[\alpha]_D^{25} = +56°$ (c =0.52 CHCl₃); IR (CHCl₃) 3500 (OH), 1775 (lactone), 1730 (ester) cm⁻¹; ¹H-NMR (CDCl₃) 1.21 (s, 3H, CCH₃), 2.75 (d, J=10.7, H-5) 3.18 (d, J=10.7, H-6), 3.40 (s, 3H, exch, OH), 3.58 (ABq, J=8.47, H-17, H-17'), 3.76 (s, 3H, OCH₃), 4.07 (d, J_{2,3}=3.17, H-3), 5.91 (dd, J=3.17 and 9.42, H-2) 6.29 (d, J_{1,2}=9.42, H-1).

(Received in UK 12 March 1984)